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Instructions

• We encourage you to work in groups on the problems. Groups of 3 will be assigned at
random at the beginning of the tutorial

• Unless otherwise specified, you can go through the tutorial in whichever order you
prefer

• If you are unable to attend a tutorial, you should work on the tutorial on your own
(for about 1.5 hours) and submit your written work

1 Ideal gas - canonical ensemble

This time let’s consider a system of N non-interacting particles in a box of volume V with
fixed temperature T . We’ll work again in the continuous case.

a) Show that in the thermodynamic limit N → ∞

F ∼ −kBTN ln

[
V

Nω3
(2mπkT )3/2

]
− kTN. (1)

You can use the multidimensional Gaussian integral for a n × n positive semidefinite
matrix A, ∫

Rn

dnx exp

−1

2

∑
i,j

Aijxixj

 =

√
(2π)n

detA

b) Compute average energy and entropy and show that they are consistent with the results
from the microcanonical ensemble.
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c) Compute the pressure P and show what the ideal gas law is recovered.

d) Compute the heat capacity at constant volume.

1.1 How do we fix W0?

Remember how the W0 factor appearing in the definition of Gibbs entropy for a continuous
system was arbitrary? In this question you’ll figure out how to fix it by using information
from quantum mechanics. We’ll work with the canonical ensemble of N non-interacting
particles in a cubic box of side L at temperature T .

a) The energy eigenvalues for each particle are

En =
h2∥n∥2

8mL2
,n = (nx, ny, nz) ∈ N3

0. (2)

Show that the canonical partition function of the discrete case is

Z =
1

N !

(∑
ε

e−ε2/2

)3N

, ε =
h

L

n√
4mkT

, n ∈ N0. (3)

b) Rewrite the inner sum from the partition function as

1

∆ε

∑
ε

∆εe−ε2/2,∆ε =
h

L

1√
4mkT

. (4)

Argue that when ∆ε is small enough we can approximate the sum with an integral,
and show that

Z ≈ V N

N !h3N
(2πmKT )3N/2, (5)

where V = L3.

c) Discussion topic: does it make sense to assume that ∆ε is small? What is its order of
magnitude for some gas at room temperature?

d) Compare the free energy obtained in the continuous case with the one you would get
from eq. 5 in the discrete case to figure out what W0 should be to get matching results.
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2 Ideal gas - grand canonical ensemble

The ideal gas can also be studied using the grand canonical ensemble. Recall that in this
case we have

Z =
∞∑

N=0

eβµNZN (6)

where ZN is the canonical partition function for N particles.

a) Use the results from the previous question to show that

Z = exp

[
eβµ

V

h3
(2πmkT )3/2

]
. (7)

b) Show that Z = eN̄ and use this to invert the expression for µ in terms of (T, V,N) as

µ = −kBT ln

[
V

Nh3
(2πmkT )3/2

]
. (8)

c) Show that the entropy is the same as the one you get from the canonical ensemble, once
you rewrite it in terms of (T, V,N). Note that there was no need to use the Stirling
approximation.

d) Show that the ideal gas law PV = NkBT still holds.

3 Occupation numbers for non-interacting quantum gas

Consider a non-interacting quantum gas, where the single particle energy levels are discrete,
labeled by i, with energy ϵi, which can all be chosen to be non-negative, with the ground
state being at energy 0. We want to derive the average number of particles in any given
state, at a particular temperature.

a) Show that the grand partition function with inverse temperature β and chemical po-
tential µ is given by,

Z =
∏
i

∑
ni

e−βni(ϵi−µ)

See that one can rewrite this as a product of grand partition functions of each level i,
Zi.
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b) Find the occupation numbers of the level i for bosons (where ni can be 0, 1, · · · ,∞)
and fermions (where ni can be 0, 1). You can use the fact that the grand potential is
related to the grand partition function as Φi = −kBT logZi. Are there any restrictions
on µ for bosons or fermions?

c) For T → 0, how do ni for fermions look like, as a function of ϵ − µ0, where µ0 to
represent the chemical potential of the system at T = 0. Make a plot of this mean
occupation number as a function of ϵ (drawing it is fine).

4 Fermi gas

Consider the free fermi gas, which are non-interacting, non-relativistic fermions, with mean
number of particles in each single-particle energy state is given by

⟨nϵ⟩ =
1

eβ(ϵ−µ) + 1
. (9)

Assume the fermions are kept in a L×L×L three dimensional box, and the energy is related
to the wavenumber of the fermion as E = ℏ2k2

2m . Assume that the fermions are electrons with
two internal spin states.

a) What is the density of states for this system? You can compute this by counting the
number of states at a given energy level, via the correspondence, 2

∑
n →

∫
g(ϵ)dϵ.

b) The chemical potential µ0 is generally referred to as the Fermi energy of the system and
is denoted by ϵF . Using the density of states to perform an integration, the defining
equation for the Fermi energy is given by∫ ϵF

0
g(ϵ)dϵ = N. (10)

Show that the corresponding Fermi momentum is given by

pF =

(
3N

4πV

)1/3

h, (11)

and the Fermi energy is given by

ϵF =

(
3N

4πV

)2/3 h2

2m
. (12)
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c) Show that the ground-state energy is given by

E0

N
=

3

5
ϵF . (13)

d) What is the degeneracy pressure for the free fermi gas at zero temperature?

The degeneracy pressure just completely arises from the fermionic statistics and no
thermal motion (T = 0). The degeneracy pressure for ultrarelativistic fermions can
prevent stellar collapse for old white dwarfs.
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