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Instructions

• We encourage you to work in groups on the problems. Groups of 3 will be assigned at
random at the beginning of the tutorial

• Unless otherwise specified, you can go through the tutorial in whichever order you
prefer

• If you are unable to attend a tutorial, you should work on the tutorial on your own
(for about 1.5 hours) and submit your written work

1 Critical exponents of the van der Waals gas

In this question we will compute the critical exponents for the van der Waals gas (i.e., you
will look at the asymptotic behaviour near the critical point given by T = Tc, P = Pc, and
V = Vc). To make things easier, we will work with the reduced variables

Pr =
P

Pc
, vr =

v

vc
, Tr =

T

Tc
, (1)

as well as
t = Tr − 1. (2)

We will start by assuming the form of the equation of state,

Pr =
8Tr

3vr − 1
− 3

v2r
. (3)

You will obtain this form of the equation of state in the first homework.
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(a) First let’s look at the behaviour of vr as a function of Pr when Tr = 1, close to the
critical point. Show that

δv = vr − 1 ∝ (Pr − 1︸ ︷︷ ︸
δP

)1/δ (4)

with δ = 3.

(b) Next we’ll look at the isothermal compressibility

κT = −1

v

∂v

∂P
(5)

when vr = 1 and Tr → 1+. Show that

κT ∼ t−γ , (t → 0+) (6)

with γ = 1.

Hint: look at ∂Pr
∂vr

∣∣∣
vr=1

first.

(c) Next we’ll see how vl and vg depend on Tr as Tr → 1−. To make this simpler, we’ll
write

vl = 1− δvl, vg = 1 + δvg, (7)

where the corrections are small and positive.

Using this and the fact that

8Tr

3vl − 1
− 3

v2l
=

8Tr

3vg − 1
− 3

v2g
(8)

show that
vl − 1 ∼ −|2t|β, vg − 1 ∼ |2t|β (t → 0−) (9)

with β = 1/2.

(d) Last we’ll look at the behaviour of the specific heat at constant volume,

CV =

(
∂U

∂T

)
V

, (10)

where it’s important to note that we are thinking of U as a function of (T, V ) rather
than (S, V ). N is also constant.
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• First let’s find the expression for U(T, V ) = F + TS. Start by proving that(
∂U

∂V

)
T

= −P + T

(
∂P

∂T

)
V

(11)

• Next show that

U(T, v) = U0(T ) +N

∫ v

∞

(
∂U

∂V

)
T

dv (12)

and argue on physical grounds that U0(T ) =
3
2NkT .

• At this point you should have

U(T, v) =
3

2
NkT − aN

v
(13)

Show that

CV ∼ 3

2
Nk|t|−α (t → 0) (14)

with α = 0.

2 Critical exponents from Landau theory

In Landau theory for problems related to magnetization, the partition function is expressed
as a functional integral of an n component real valued order parameter field m⃗(x) existing in
a d-dimensional space; where x⃗ ≡ (x1, x2, · · · , xd) and m⃗ ≡ (m1,m2, · · · ,mn), and a Landau
Ginzburg ‘Hamiltonian’ for the order parameter field, βH [m⃗(x⃗)].

Some specific cases covered in this general framework (with d = 3):

n = 1 describes liquid–gas transitions, binary mixtures, as well as uniaxial magnets;

n = 2 applies to superfluidity, superconductivity, and planar magnets;

n = 3 corresponds to classical magnets.

In this framework, we don’t worry about the microscopic origins of the Hamiltonian, and
instead write down any Hamiltonian terms consistent with the global symmetry, m⃗ → Rnm⃗,
with Rn being the rotation in the n−dimensional order parameter space. The partition
function is written as,

Z =

∫
Dm⃗ exp (−βH[m⃗]) . (15)
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(a) What is the symmetry group associated with the one component, and the two compo-
nent cases? Are the groups discrete or continuous?

(b) In the absence of an external field, show that the lowest order terms in the Landau
Ginzburg Hamiltonian are given by,

βH = βF0 +

∫
ddx⃗

[
t

2
m2(x⃗) + um4(x⃗) +

K

2
(∇m)2 + · · ·

]
(16)

Why can we ignore terms such as ∇m or m⃗(x⃗)3 ≡
∑

imi(x⃗)mi(x⃗)mi(x⃗)?

Now assume that we have an added contribution from the magnetic work B⃗ · m⃗ to the
Hamiltonian, where h⃗ ≡ βB⃗ and B⃗ is the external magnetic field. How is the Landau
Ginzburg Hamiltonian modified? 1

(c) In the saddle point approximation, the integral can be replaced by the maximum value
of the integrand. Is the saddle point free energy an analytic function of the parameters
t, u,K · · · ?

As a first pass, let us assume the saddle points are obtained by uniform solutions of
the field, m⃗(x⃗) ≡ m⃗. When is the saddle point approximation justified? We assume
that the minimizing order parameter field is along the same direction as the external
field for the further computations.

What is the function Ψ(m⃗) which is to be extremized to obtain the saddle point solu-
tions, when we keep only upto the quartic term in the Landau Ginzburg Hamiltonian?
What should be the value of u such that the integral is well defined?

(d) Plot the following functions

• Ψ(m⃗) as a function of m (magnitude of m⃗), assuming t > 0, and for different h,
namely h < 0, h = 0, and h > 0.

• Ψ(m⃗) as a function of m, assuming t < 0, and for different h, namely h < 0,
h = 0, and h > 0.

• The minima m as a function of h, for t > / = / < 0.

(e) Identify the first order and second order transitions from the above analysis.

1This technically modifed the ensemble from being canonical to the Gibbs canonical; however we will still
(misleadingly) denote the corresponding free energy as F , which is usually reserved for the Helmholtz free
energy.
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(f) We will minimally identify t = a(T − Tc) as the monotonic function of temperature,
for a non-universal function a > 0.

• At h = 0 (zero field), find the expressions for the saddle point magnetization, m,

longitudinal susceptibility χl =
∂m
∂h

∣∣
h=0

, heat capacity, C(h = 0) = −T ∂2F
∂T 2 as a

function of Tc − T .

• At the critical isotherm, t = 0, find the expression for the magnetization m(t = 0)
as a function of h.

Identify the corresponding critical exponents, α, β, γ, δ. Recall, C ∼ t−α, m(h = 0) ∝
tβ, χ ∼ t−γ , m(t = 0) ∝ h1/δ.
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