
Statistical Physics
Fall 2024

Emilie Huffman, Subhayan Sahu

Tutorial 8

Nov 4, 2024

1 Classical to Quantum mapping: Ising spin in a transverse field

We will see how the statistical mechanics of the Ising chain,

H = −K

Mτ∑
ℓ=1

σz
ℓσ

z
ℓ+1 − h

Mτ∑
ℓ=1

σz
ℓ

can be mapped onto the quantum mechanics of a single Ising spin. Here Mτ number of Ising
spins are placed on a 1d chain with lattice constant a.

The partition function, Z =
∑

{σz
ℓ }

exp(−H) can be rewritten using Transfer matrices T1

and T2, as

Z =
∑

{σz
ℓ=±1}

Mτ∏
ℓ=1

T1

(
σz
ℓσ

z
ℓ+1

)
T2(σ

z
ℓ ),

where, T1 (σ
z
1 , σ

z
2) = exp (Kσz

1σ
z
2) and T2(σ

z) = exp (hσz). Note this has a slightly different
notation than the transfer matrix problem we solved during the tutorial. Recall that using
the transfer matrix tool, we found that the two-point spin correlator for h = 0, defined as
C(ℓ− ℓ′) ≡ ⟨σz

ℓσ
z
ℓ′⟩, for ℓ′ ≥ l, was found to be,

C(ℓ− ℓ′) = (tanhK)ℓ
′−ℓ.

It is useful to label the spins not by the site index ℓ but by a physical length coordinate τ ,
by identifying,

τ = ℓa,

and a physical length scale for the entire chain, Lτ = Mτa.

1. Identify the correlation length from the expression above, in terms of a andK. Confirm
the behavior of the correlation length as K → ∞.
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2. Now, we will operate in the scaling limit, ξ ≫ a. In this limit, show that the transfer
matrix can be approximately written as,

T1T2 ≈ exp

−a

−K

a︸︷︷︸
E0

−∆

2
σ̂x − h

a︸︷︷︸
h̃

σ̂z


 ,

where now the terms in the exponent are the Pauli x and z operators.

Show that the partition function can now be written as Z = Tr exp (−HQ/T ), for the
appropriately defined quantum Hamiltonian of a single spin, at a temperature T . How
are the temperature T and the parameter ∆ related to the parameters in the classical
Ising model?

3. Compute the free energy of the quantum spin F = −T lnZ. This is the same answer
that you would have obtained from the classical Ising model in the appropriate limit.
This is another evidence of “universality” near the second order phase transition.

4. The correspondence between H0 and T also extends to correlation functions. Let us
define the time ordered correlator, C, of H0 at imaginary time by

C(τ1, τ2) =

{
1
2Tr

(
e−HQ/T σ̂z(τ1)σ̂

z(τ2)
)

for τ1 > τ2,
1
2Tr

(
e−HQ/T σ̂z(τ2)σ̂

z(τ1)
)

for τ1 < τ2,
(6)

where σ̂z(τ) ≡ eHQτ σ̂ze−HQτ . Argue that this is the same as the classical model
correlation function.

2 Quantum Ising chain to classical Ising model

Now we go the other way, and show that the quantum Ising model in d spatial dimension
can be related to the d + 1 classical Ising model in an appropriate scaling limit. We will
specialize in the case of d = 1.

The 1d Quantum Ising model is defined as,

HQ = −Jg
∑
i

σ̂x
i − J

∑
⟨ij⟩

σ̂z
i σ̂

z
j , (1)
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for nearest neighbor sites ⟨i, j⟩. We will use M to describe the number of qubits, with
M → ∞ being the thermodynamic limit. The parameter g controls the phase diagram of
the Quantum Ising chain at T = 0.

We consider the finite temperature partition function for this model, at a Temperature T ,

Z = Tr exp (−HQ/T ) . (2)

We will now consider a transfer matrix associated with the imaginary time evolution over a
short time ε, that discretizes the inverse temperature scale into Mτ discrete parts, identifying
Mτε = 1/T ≡ Lτ . We will be interested in the scaling limit ε → 0 and Mτ → ∞ while
keeping 1/T fixed.

1. Show that in the scaling limit, the exponential of the quantum Hamiltonian can be
approximated by a product of 2M ×2M dimensional transfer matrices as exp(−εHQ) ≈
T1T2+O(ε2), where T1 involves the Pauli x operators, and T2 involves the products of
the Pauli z operators. Write down the expressions for the transfer matrices.

2. Now insert a complete set of states between each T1T2 term in Z = Tr (T1T2)
Mτ . To

do this, choose the eigenstates |{mi(ℓ)}⟩ which are the ±1 eigenstates of all σ̂z
i , for

every “time” step ℓ. Then demonstrate that the quantum partition function can be
reinterpreted as a partition function of an anisotropic classical Ising model,

Z =
∑

{mi(ℓ)}

exp

∑
i,ℓ

[Jami(ℓ)mi+1(ℓ) +Bmi(ℓ)mi(ℓ+ 1)]

 . (3)

Write down the form of B in terms of the Ising parameters J , g and ε.

Hint: Use the identity ⟨m| exp (Jgaσ̂x) |m′⟩ = A exp (Bmm′) . Deduce the expressions
for A and B for this to be true.

Now we consider the limit T = 0. In this limit, we can keep ε to be small but non-zero,
and take the “thermodynamic” limit β → ∞ and still be in the scaling limit where the
above derivation works. The phase diagram We can take the ε → 0 limit at the end without
modifying the physical results.

Notice that in this limit, the 2d classical Ising model has anisotropic couplings, Kx = Jε and
Kτ = −1

2 log tanh(Jgε). One can rigorously show that there is a classical phase transition
in the anisotropic Ising model when g is tuned using Kramers Wannier duality that relates
the high temperature and the low temperature phases of the classical Ising model, which we
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will not show here. However, from that argument, you can deduce that if there is a phase
transition, it must occur at a point where sinh 2Kx = sinh 2Kτ .

1. Can you deduce where the phase transition occurs using the information above, i.e.
what is gc?

2. What are the phases for g ≪ gc and g ≫ gc?

3. Can you see why the critical behavior in the vicinity of the phase transition gc matches
the 2d classical Ising universality class?
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