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1 Local indistinguishibility in topologically ordered ground states

Consider the toric code model on a 2d torus,

H = −
∑
v

(∏
e∋v

Xe

)
−
∑
p

(∏
e∈p

Ze

)
,

which has a four dimensional ground-state subspace. Here e, v, p refer to edges, vertices,
and plaquettes on the square lattice respectively. Show that any state in the ground-state
subspace is locally indistinguishable.

You can prove this statement in several ways (feel free to look for your own method first!);
in this problem we will guide you through a specific solution.

a) First we introduce the notation: let Γ1 and Γ2 be the two non-trivial cycles in the
toric code lattice on the torus, and Γ

′
1 and Γ

′
2 be the two non-trivial cycles in the dual

lattice, such that Γ1 is perpendicular to Γ
′
1 and Γ2 is perpendicular to Γ

′
2. We will refer

to the string of X and Z operators along a non-trivial cycles Γ as XΓ and Γ
′
as ZΓ′ .

The logical operators are thus XΓ1 , XΓ2 , ZΓ
′
1
, Z

Γ
′
2
(check that these commute with the

stabilizers).

Consider |ψ1⟩ to be a ground state of the toric code that satisfies Z
Γ
′
1
|ψ1⟩ = |ψ1⟩ and

Z
Γ
′
2
|ψ1⟩ = |ψ1⟩.

Now show that the states |ψ2⟩ = XΓ1 |ψ1⟩, |ψ3⟩ = XΓ2 |ψ1⟩, and |ψ4⟩ = XΓ1XΓ2 |ψ1⟩
are orthogonal ground-states spanning the ground state subspace of the toric code.

b) Now consider a contractible contiguous region in the torus, labeled A. We want to
show that for any state in ground state subspace, the reduced density matrix on A is
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the same. Show that a sufficient condition to proving this is demanding that for any
local operator OA,

⟨ψi|OA |ψj⟩ = cδij , (1)

for a constant c.

Hint: Consider any state in the ground-state subspace to be a superposition of the basis
set defined earlier.

c) First argue that ⟨ψi|OA |ψi⟩ = ⟨ψj |OA |ψj⟩ for any i, j, by checking the definitions of
|ψi⟩.

Hint: You can deform the string operators around the torus to be supported entirely on
the complement of A, i.e. A.

d) Next, argue that ⟨ψi|OA |ψj⟩ = 0 for i ̸= j. You can do this by first choosing a specific
pair, for example, ⟨ψ1|OA |ψ2⟩. Consider the Schmidt decomposition of the states
|ψσ=1,2⟩ on the regions A and its complement A, as |ψσ⟩ =

∑
λAσ,λ |ψσ,λ⟩A

∣∣ψσ,λ

〉
A
.

By using the fact that ψ1 and ψ2 are defined such that their eigenvalues of the Z
Γ
′
1
are

different, argue that
〈
ψ1,λ

∣∣ψ2,λ⟩A = 0, thus proving the original proposition.

e) Finally let us compare this scenario to ordinary spontaneous symmetry breaking. For
Z2 symmetry breaking in the quantum Ising model H = −

∑
i ZiZi+1, the ground-state

subspace has two-fold degeneracy spanned by |GHZ±⟩ ∼ |000 · · · 0⟩± |111 · · · 1⟩. Show
that the reduced density matrix of either of these two states on a subregion (strictly
smaller than the entire system) is the same. However, show that not all states in the
ground-state subspace has this property. You can demonstrate this by constructing
two specific states in the ground-state subspace that are locally distinguishable.

2 Berry Phase and Chern number

In this problem you will compute some important quantities related to the Berry phase, and
use it compute electromagnetic response in Chern insulators, which exhibit behavior akin to
the Integer quantum Hall effect, but without any external magnetic field!

Suppose a Hamiltonian H(λ) depends on several parameters λ ≡ (λ1, λ2, ..., ), with {|n(λ)⟩}
being the orthonormal eigenstates of the Hamiltonian. We want to investigate the topology
of the space of eigenstates as we move around the parameter space. To study that, we
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can introduce a gauge connection in the space of parameters, called the Berry connection
(defined for each eigenstate n),

An
j (λ) = −i ⟨n(λ)| ∂

∂λj
|n(λ)⟩ (2)

This quantity is only defined when the eigenstates do not cross while the parameters are
varied. The Berry connection integrated along a closed path in parameter space captures
the extra phase (dubbed Berry phase) that an eigenstate picks up when the parameters are
varied adiabatically along some closed path C in parameter space. This is referred to as he
Berry phase,

eiγ
n
= exp

(
−i
∮
C
An(λ) · dλ

)
. (3)

There is a (gauge) redundancy in the information contained in the Berry connection An(λ).
This follows from the arbitrary choice we made in fixing the phase of the reference states
{|n(λ)⟩}. It is thus natural to compute a gauge invariant quantity, named the Berry curva-
ture,

Fn
ij =

∂An
j

∂λi
− ∂An

i

∂λj
. (4)

The Berry phase can alternatively been expressed in terms of the curvature,

eiγ
n
= exp

(
−i
∮
S
Fn
ijdSij

)
. (5)

where S is a surface that is bounded by the closed curve C, which is readily obtained by
applying Stokes’ theorem.

2.1 Berry phase for a spin-1/2 particle in a magnetic field B

We will apply this formula specifically to calculate the Berry phase for a spin-1/2 particle
in a magnetic field, B, in three dimensions. The Hamiltonian is given by

H = B · σ = Bxσx +Byσy +Bzσz, (6)
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where σx,y,z are the 2×2 Pauli matrices. The parameter vector λ in the above expressions for
γn corresponds in this case to the magnetic fieldB = (Bx, By, Bz) = B(sin θ cosϕ, sin θ sinϕ, cos θ),
where B = |B|.

The orthonormal eigenstates of this Hamiltonian are given by

|+B⟩ =
(

cos
(
θ
2

)
e−iϕ

sin
(
θ
2

) )
, and |−B⟩ =

(
sin
(
θ
2

)
e−iϕ

− cos
(
θ
2

) )
, (7)

with eigenvalues +B and −B, respectively (with them being degenerate when B = 0). The
Berry connection will be defined over the space of angles, namely θ, ϕ and the magnitude B
of the magnetic field.

a) Compute the Berry connection Aθ, Aϕ, and the Berry curvature Fθϕ for both the
eigenstates |±B⟩.

b) From the expression you get, deduce that the Berry curvature for the state |+B⟩ is
given by (in the cartesian coordinate)

F+
ij =

1

2
ϵijk

Bk

B3
, (8)

which is equivalent to the field generated by a monopole of strength 1/2 located at
the origin. The location of this monopole corresponds to the point where the two
eigenstates |+B⟩ and |−B⟩ become degenerate. Does the interpretation change if
we repeat the same calculation for the Berry curvature corresponding to the |−B⟩
eigenstate?

c) Show that the Berry phase corresponding for a closed curve C in the parameter space
that does not include the degenerate point is given by

γ+ = −1

2
Ω(C), (9)

where Ω(C) is the solid angle that the curve C subtends from the degeneracy point at
B = 0. Does the phase depend on which of the two enclosing surfaces we take? Hint:
Recall Gauss’s Law in electrodynamics.

d) We can get what’s called a Chern number for a closed surface and a Berry curvature
by integrating the Berry curvature over this surface–it’s quantized in units of 2π such
that

−
∮
S
dSijFij = 2πC, (10)
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where C ∈ Z is the Chern number - an integer. Calculate the Chern number C+

corresponding to the curvature F+
ij for the case of a closed surface S that encloses the

degeneracy point.

2.2 Chern insulator

The Berry connection can also be defined on the space of states, as opposed to the space
of parameters in the Hamiltonian. One place this is natural is when we have free fermions
hopping a lattice with discrete translation symmetry.

We will use this idea to study Chern insulators, which exhibit the quantized Hall response
without any external magnetic field (unlike in Integer Quantum Hall effect, where one needs
an external magnetic field)! In this problem you will not derive many of the formulae, just
use some of the results related to Berry phases (without proof) to numerically discover the
Hall response. So, while the actual writeup seems long, the final computation will be rather
simple.

We will focus on a two dimensional square lattice, with lattice constants a(≡ 1) in both
directions. Recall, the eigenstates are given by Bloch states,

ψk(x) = eik·xuk(x), (11)

where the crystal momenta k are defined over the Brillouin zone, −π/a < kx,y ≤ π/a, and
uk(x + 1) = uk(x). Notice, the crystal momenta live on the unit torus T 2. Now, we will
investigate the topology of the space of states as we move around the Brillouin zone. We
can define a Berry connection, curvature, and Chern number (which is an integer for each
band),

Ai(k) = −i ⟨uk|
∂

∂ki
|uk⟩ , (12)

Fxy =
∂Ay

∂kx
− ∂Ax

∂ky
, (13)

C = − 1

2π

∫
T 2

d2kFxy. (14)

Next, we will consider the simplest model of a Chern insulator, which is a two band model
of a Dirac fermion on two dimensional lattice, with the Bloch Hamiltonian,
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H̃(kx, ky) = (sin kx)σx + (sin ky)σy + (cos kx + cos ky +m)σz︸ ︷︷ ︸
E(k)·σ

, (15)

Note that this looks a lot like a spin half in magnetic field from the previous problem; except
now the parameter space is the space of crystal momenta kx, ky ∈ T 2 (with m as an external
parameter which we are not sweeping over), as opposed the 3 components of a magnetic
field in three dimension. Furthermore, this Bloch Hamiltonian arises naturally on the lattice
without any external magnetic field.

You may (should!) use Mathematica for the computations that follow.

a) Compute the two eigenstates and eigenvalues of the Bloch Hamiltonian as a function
of kx, ky,m. Observe that the spectrum becomes gapless at certain momenta at m =
0,−2,+2.

b) Away from the gapless points at m ∈ {−2, 0,+2}, the system can be made to be an
insulator by tuning the chemical potential in the gap and filling the lower band.

We want to compute the Chern number of this band. In fact, it is useful to introduce
a mapping between the 2 torus to a 2 sphere T 2 → S2, by introducing a unit three
vector,

n(k) =
E(k)

|E(k)|
. (16)

One can show (you don’t have to prove, but you are welcome to try!), that under this
mapping, the formula for the Chern number becomes,

C =
1

4π

∫ π

−π

∫ π

−π
d2k n ·

(
∂n

∂kx
× ∂n

∂ky

)
. (17)

Compute the Chern number numerically in the gapped regions m < −2,−2 < m <
0, 0 < m < 2,m > 2.
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c) Finally, one can relate the Hall conductance to the Chern number of the band by the
famous TKNN (Thouless, Kohomoto, Nightingale and den Nijs) formula,

σxy =
e2

2πℏ
∑

a∈filled bands

Ca. (18)

Argue that from your previous result you get that the Hall conductivity in the Chern
insulator is quantized to non-zero values in different gapped regions.
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