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Tutorial 3: Toric code

1 The Toric Code Model

In this tutorial we will review the basics of the Toric Code model [

Consider a square lattice with one spin 1/2 degree of freedom (basis states |0) and |1)) per
each edge.

The Hamiltonian contains two types of terms: one involving four 7%’s around a vertex v, one
involving four 7%’s around a plaquette p.

a)

b)

H==3 (1) -3 (II7) M

v vee P ecp

Check that all the terms in the Hamiltonian commute with each other. How can we
describe the ground state in terms of the local stabilizers?

We will find a nice pictorial way to think of the wave-function. We can think of the spin
1/2 degrees of freedom as a Zs string on each edge. That is, the |+) state corresponds
to no string on each edge while the |—) state corresponds to the existence of a string
on the edge. Consider states that minimize the the energy of the —[], .. 7 terms
for each vertex. What are the allowed local configurations of the strings around the

vertex? What does this say about the allowed global configurations of the strings?

Now consider the action of the plaquette terms Heep 77 on the subspace of allowed

string states. What does the ground state wavefunction look like in this basis?

Now let us pay more attention to the boundary conditions. Consider the system on a
torus. Can you argue what the ground state degeneracy is from the pictorial description
of the ground state wavefunction that you get?

'The tutorial is adapted from notes by Xie Chen https://xiechen.caltech.edu/documents/27793/UQM_
lecture.pdf


https://xiechen.caltech.edu/documents/27793/UQM_lecture.pdf
https://xiechen.caltech.edu/documents/27793/UQM_lecture.pdf
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Figure 1: The Toric Code model: (a) Hamiltonian terms, (b) (c) logical operators along
nontrivial loops.
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Figure 2: Creation of fractional excitations in the Toric Code model and their braiding.

e) Now we will look for operators that can distinguish between the different ground states.
Consider the S* = [ 7% string operators along the nontrivial loops in the = and y direc-
tion, and the S* = [[ 7" string operators along the nontrivial loops on the dual lattice.
Argue that these operators commute with the Hamiltonian but anticommute with each
other in a specific way. Explain how this describes the groundstate degeneracy, and
can be interpreted as logical operators in vieiwing the toric code as a quantum error
correcting code.

f) When the string operator ends, Hamiltonian terms are violated and anyonic excitations
are made in pairs (at each ends), as shown in Fig. 2. The ends of the S* operator are
the electric e excitations; the ends of the S* operator are the magnetic m excitations.
We will compute the exchange and braiding statistics according to the figure 3.
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Figure 3: String operator configurations for calculating the exchange and braiding statistics
of fractional excitations. The exchange statistics can be calculated in the three
steps shown. The string operators in the same shaded areas overlap with each
other. They are drawn as apart only for clarity.

Show that the e and m anyons are self-bosons and mutual fermions!

2 TC from Gauging the Ising Paramagnet

We will see in the lectures that the Toric code “emerges” a Z5 gauge theory on the lattice. For
more details on why exactly the toric code is a gauge theory, see Sec. 3 of Xie Chen’s notes,
or John McGreevy’s notes on Quantum Phases of Matter (Spring 2024). In this problem, we
will just follow some computations that build more intuition about the emergence of toric
code by gauging the Ising paramagnet.

It is useful to just use the following dictionary for interpreting the energy terms of the toric
code Hamiltonian as terms in Zy gauge theory:

[[7F = e Secbe, J[77 = ¢l Zeen e 2)
vEe eep
9y
where E and A are Z5 valued equivalents of the electric field and the electromagnetic po-
tential respectively.

Therefore, imposing these two terms correspond to imposing the gauge symmetry (Gauss’s
law) around vertex v and imposing the zero flux condition around plaquette p respectively.

As a Zs gauge theory, Toric code can be obtained by ‘gauging’ a model with global Zs
symmetry. That is, to promote the global Z5 symmetry in the model to a local Zs symmetry.



Figure 4: Gauging the Z2 symmetry in the transverse field Ising model to obtain the Toric
Code model.

In particular, it can be obtained by ‘gauging’ the trivial paramagnet in the transverse field
Ising model. Let’s see how that is achieved.

In the transverse field Ising model, the Hamiltonian at the paramagnetic limit (no sponta-
neous symmetry breaking) takes the simple form of

H=-Y o (3)

where o% acts on the spin 1/2 degrees of freedom on each lattice site (circles in Fig.4) as
1

<(1) 0>. This is the 'matter’ DOF of the system. The system has a global Zy symmetry of

U = 1], of and the ground state is invariant under this symmetry

1
) = ®ﬁ(| n+1) (4)

where | 1) and | |) are eigenstates of 0% = <(1] _01)

Our goal is to take the system with global symmetry and turn it into a system with local
symmetry. That is, the symmetry group will be generated not by just one global symmetry
operation, but by symmetry operations at all spatial locations (on each lattice site). Note
that, the transverse field Hamiltonian is already invariant under local Z3 symmetries gener-
ated by o® on each site. But this is no longer true if a small Ising perturbation of the form
o%0% is added. We want the procedure to work for the whole phase. Therefore, although we



will focus on the transverse field limit for simplicity of discussion, we will present a gauging
procedure that can be applied to any Zs symmetric Hamiltonian.

The gauging procedure can be generalized to all kinds of global internal unitary symmetries
of group G in the following steps:

e Take a system with global unitary internal symmetry of group G with degrees of
freedom on the sites of a lattice and with global symmetry acting as a tensor product
of operators on each lattice site.

e Introduce gauge field degrees of freedom onto the edges of the lattice and define gauge
symmetry transformation as acting on each lattice site and the edges around it.

e Modify the terms in the original Hamiltonian, by coupling the original degrees of
freedom with the gauge field, such that each term is invariant under all local gauge
symmetry transformations.

e Add vertex terms to the Hamiltonian to enforce gauge symmetry and add plaquette
terms to enforce the zero flux constraint.

To do this, first we introduce the gauge field degrees of freedom on each edge of the lattice
(diamonds in Fig.4). For a Zy gauge field, the degrees of freedom are again two level spin
1/2’s and we label them as 7 spins. We define a local Zs symmetry generated at each lattice
site with U, = o} [ [,.c. 7¢ where the product is over all edges with v as one end point. This
local symmetry can be interpreted as enforcing the Gauss’s law in the presence of charged

matter.

a) Now, follow the steps mentioned above, interpreting the zero flux constraint as adding
a term in the Hamiltonian as — 3 [[.c,7; (for an explanation why, read the next
section after the computations). What is the Hamiltonian that you get after you do
the gauging? Argue, why it is the following;:

Hg:—ZUf—ZUv—ZF :—Zaf—ZJffHTE—ZHTj. (5)

vee p ecp

b) Now argue that by enforcing the gauge symmetry as a constraint, we get exactly the
toric code!

¢) The usefulness of the interpretation of the toric code as a gauge theory comes from the
fact that its properties can be interpreted as a property of the entire phase in a gauge
theory, and not just for the isolated toric code Hamiltonian.



To see this, we will now see that the mutual and self statistics of the (anyonic) quasi-
particles are still true in the above Hamiltonian when the U, is not enforced as a hard
constraint and the matter DOF are kept in the system.

Check now that the string operators can take the form shown in Fig. 4 (b), (c). The
one of the form o*7%7%...7%0% creates a gauge charge e at its two ends, in a way that
does not violate the gauge constraints. The one of the form 7%7%...7% creates a w gauge
flux m at its two ends. Using the procedure in Fig. 3, show that both the gauge charge
and gauge flux are bosons and they have a —1 mutual braiding statistics.
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