
Quantum Matter
Spring 2025

Subhayan Sahu, Leo Lessa, Chong Wang

Tutorial 3: Toric code

1 The Toric Code Model

In this tutorial we will review the basics of the Toric Code model 1.

Consider a square lattice with one spin 1/2 degree of freedom (basis states |0⟩ and |1⟩) per
each edge.

The Hamiltonian contains two types of terms: one involving four τx’s around a vertex v, one
involving four τ z’s around a plaquette p.

H = −
∑

v

(∏

v∈e
τxe

)
−
∑

p

(∏

e∈p
τ ze

)
(1)

a) Check that all the terms in the Hamiltonian commute with each other. How can we
describe the ground state in terms of the local stabilizers?

b) We will find a nice pictorial way to think of the wave-function. We can think of the spin
1/2 degrees of freedom as a Z2 string on each edge. That is, the |+⟩ state corresponds
to no string on each edge while the |−⟩ state corresponds to the existence of a string
on the edge. Consider states that minimize the the energy of the −∏

v∈e τ
x
e terms

for each vertex. What are the allowed local configurations of the strings around the
vertex? What does this say about the allowed global configurations of the strings?

c) Now consider the action of the plaquette terms
∏

e∈p τ
z
e on the subspace of allowed

string states. What does the ground state wavefunction look like in this basis?

d) Now let us pay more attention to the boundary conditions. Consider the system on a
torus. Can you argue what the ground state degeneracy is from the pictorial description
of the ground state wavefunction that you get?

1The tutorial is adapted from notes by Xie Chen https://xiechen.caltech.edu/documents/27793/UQM_

lecture.pdf

1

https://xiechen.caltech.edu/documents/27793/UQM_lecture.pdf
https://xiechen.caltech.edu/documents/27793/UQM_lecture.pdf


Figure 1: The Toric Code model: (a) Hamiltonian terms, (b) (c) logical operators along nontrivial
loops.

energy of each of the Hamiltonian terms. There is a nice pictorial way to think of the wave-function.
We can think of the spin 1/2 degrees of freedom as a Z2 string on each edge. That is, the |+i state
corresponds to no string on each edge while the |�i state corresponds to the existence of a string
on the edge. To minimize the energy of the �Qv2e ⌧

x
e terms, an even number of strings has to

terminate at each vertex. That is, in the ground state, the strings always form loops and do not
end.

Within the subspace of states representing closed loop configurations, the
Q

e2p ⌧
z
e terms map

one configuration to another by creating / destroying loops or moving them. The energy of the
�Qe2p ⌧

z
e terms can be minimized if the closed loop configurations that are related through theQ

e2p ⌧
z
e terms are added together into a superposition. Therefore, the ground state wave function

takes the form
|�i =

X

C: closed loop configurations

|Ci (4)

Actually, in writing Eq. 4, we are a bit sloppy because there are situations where not all closed loop
configurations can be mapped into each other through the moves generated by

Q
e2p ⌧

z
e . Consider,

for example, the model defined on a torus. This is realized when we take the periodic boundary
condition on the square lattice. The 2 + 1D torus contains two nontrivial loops: one in the x
direction, one in the y direction. The nontrivial loops satisfy the closed loop constraints (theQ

v2e ⌧
x
e terms) everywhere but a single one cannot be created with the

Q
e2p ⌧

z
e terms. Therefore,

there are four di↵erent ground states on torus: one with an even number of nontrivial loops in
both x and y directions, one with an even number of nontrivial loops in x direction and odd in y,
one with odd in x and even in y, one with odd in both x and y. The Sz =

Q
⌧ z string operator

along the nontrivial loops in the x and y direction as shown in Fig. 1 (b) and (c) maps between
these ground states. At the same time, the four ground states are eigenstates of the Sx =

Q
⌧x

string operators along the nontrivial loops on the dual lattice, as shown in Fig. 1 (b) and (c), with
di↵erent eigenvalues {±1, ±1}. Therefore, within the four dimensional ground state subspace, S1

z ,
S2

z , S1
x, S2

x are the logical Pauli X and Pauli Z operators for the two logical qubits.

The Sz operator along any closed loop in the lattice commutes with the Hamiltonian. Same is
true for the Sx operator along any closed loop on the dual lattice. When the string operator
ends, Hamiltonian terms are violated and excitations are made in pairs (at each ends), as shown in
Fig. 2. The ends of the Sz operator are the electric e excitations; the ends of the Sx operator are
the magnetic m excitations. The most interesting feature of these excitations shows up when they
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Figure 1: The Toric Code model: (a) Hamiltonian terms, (b) (c) logical operators along
nontrivial loops.

Figure 2: Creation of fractional excitations in the Toric Code model and their braiding.

go around each other. In particular, when a pair of m excitations are created and one of them is
brought around a single e excitation and re-annihilated with the other m, as shown in Fig. 2, it
results in a �1 phase factor.

Figure 3: String operator configurations for calculating the topological spin and braiding statistics
of fractional excitations.

More generally, the exchange statistics of one type of fractional excitation and the braiding statistics
between two types of fractional excitations can be calculated using the diagrams in Fig. 3. The
exchange statistics can be calculated in the three steps shown. The string operators in the same
shaded areas overlap with each other. They are drawn as apart only for clarity. The braiding
statistics is calculated as the ratio between two diagrams. The diagrams represent the same process
as in Fig. 2 expect for the last (dispensable) step where the two e excitations are brought together
and annihilated.

3 TC as a Gauge Theory

The Toric Code is also called a Z2 gauge theory. Why is it a gauge theory? The first introduction
to gauge theory in physics classes is probably through electromagnetism, which is a gauge theory
because it has gauge symmetry. Recall that Maxwell’s equations read

r · ~B = 0, r⇥ ~E = �@
~B

@t
, r · ~E =

⇢

✏0
, r⇥ ~B = µ0

~j + ✏0µ0
@ ~E

@t
(5)

The gauge symmetry comes with the introduction of the electromagnetic potentials. Note that the
first equation is automatically satisfied if

~B = r⇥ ~A (6)
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Figure 2: Creation of fractional excitations in the Toric Code model and their braiding.

e) Now we will look for operators that can distinguish between the different ground states.
Consider the Sz =

∏
τ z string operators along the nontrivial loops in the x and y direc-

tion, and the Sx =
∏
τx string operators along the nontrivial loops on the dual lattice.

Argue that these operators commute with the Hamiltonian but anticommute with each
other in a specific way. Explain how this describes the groundstate degeneracy, and
can be interpreted as logical operators in vieiwing the toric code as a quantum error
correcting code.

f) When the string operator ends, Hamiltonian terms are violated and anyonic excitations
are made in pairs (at each ends), as shown in Fig. 2. The ends of the Sz operator are
the electric e excitations; the ends of the Sx operator are the magnetic m excitations.
We will compute the exchange and braiding statistics according to the figure 3.

2



Figure 2: Creation of fractional excitations in the Toric Code model and their braiding.

go around each other. In particular, when a pair of m excitations are created and one of them is
brought around a single e excitation and re-annihilated with the other m, as shown in Fig. 2, it
results in a �1 phase factor.

Figure 3: String operator configurations for calculating the topological spin and braiding statistics
of fractional excitations.

More generally, the exchange statistics of one type of fractional excitation and the braiding statistics
between two types of fractional excitations can be calculated using the diagrams in Fig. 3. The
exchange statistics can be calculated in the three steps shown. The string operators in the same
shaded areas overlap with each other. They are drawn as apart only for clarity. The braiding
statistics is calculated as the ratio between two diagrams. The diagrams represent the same process
as in Fig. 2 expect for the last (dispensable) step where the two e excitations are brought together
and annihilated.

3 TC as a Gauge Theory

The Toric Code is also called a Z2 gauge theory. Why is it a gauge theory? The first introduction
to gauge theory in physics classes is probably through electromagnetism, which is a gauge theory
because it has gauge symmetry. Recall that Maxwell’s equations read

r · ~B = 0, r⇥ ~E = �@
~B

@t
, r · ~E =

⇢

✏0
, r⇥ ~B = µ0

~j + ✏0µ0
@ ~E

@t
(5)

The gauge symmetry comes with the introduction of the electromagnetic potentials. Note that the
first equation is automatically satisfied if

~B = r⇥ ~A (6)

3

Figure 3: String operator configurations for calculating the exchange and braiding statistics
of fractional excitations. The exchange statistics can be calculated in the three
steps shown. The string operators in the same shaded areas overlap with each
other. They are drawn as apart only for clarity.

Show that the e and m anyons are self-bosons and mutual fermions!

2 TC from Gauging the Ising Paramagnet

We will see in the lectures that the Toric code “emerges” a Z2 gauge theory on the lattice. For
more details on why exactly the toric code is a gauge theory, see Sec. 3 of Xie Chen’s notes,
or John McGreevy’s notes on Quantum Phases of Matter (Spring 2024). In this problem, we
will just follow some computations that build more intuition about the emergence of toric
code by gauging the Ising paramagnet.

It is useful to just use the following dictionary for interpreting the energy terms of the toric
code Hamiltonian as terms in Z2 gauge theory:

∏

v∈e
τxe → eiπ

∑
v∈e Ee ,

∏

e∈p
τ ze → ei

∑
e∈p Ae (2)

,

where E and A are Z2 valued equivalents of the electric field and the electromagnetic po-
tential respectively.

Therefore, imposing these two terms correspond to imposing the gauge symmetry (Gauss’s
law) around vertex v and imposing the zero flux condition around plaquette p respectively.

As a Z2 gauge theory, Toric code can be obtained by ‘gauging’ a model with global Z2

symmetry. That is, to promote the global Z2 symmetry in the model to a local Z2 symmetry.
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Figure 4: Gauging the Z2 symmetry in the transverse field Ising model to obtain the Toric Code
model.

where | "i and | #i are eigenstates of �z =

✓
1 0
0 �1

◆
.

Our goal is to take the system with global symmetry and turn it into a system with local symmetry.
That is, the symmetry group will be generated not by just one global symmetry operation, but by
symmetry operations at all spatial locations (on each lattice site). Note that, the transverse field
Hamiltonian as written in Eq. 17 is already invariant under local Z2 symmetries generated by �x

on each site. But this is no longer true if a small Ising perturbation of the form �z�z is added.
We want the procedure to work for the whole phase. Therefore, although we will focus on the
transverse field limit for simplicity of discussion, we will present a gauging procedure that can be
applied to any Z2 symmetric Hamiltonian.

To do this, first we introduce the gauge field degrees of freedom on each edge of the lattice (yellow
diamonds in Fig.4). For a Z2 gauge field, the degrees of freedom are again two level spin 1/2’s
and we label them as ⌧ spins. We define a local Z2 symmetry generated at each lattice site with
Uv = �x

v

Q
v2e ⌧

x
e where the product is over all edges with v as one end point.

This local symmetry can be interpreted as enforcing the Gauss’s law in the presence of charged
matter. Using the correspondence between ⌧x and ei⇡E , we see that

Uv = �x
v

Y

v2e

⌧x
e ! ei⇡(�nv+

P
v2e Ee) (19)

where we have defined a Z2 charge nv for the � spin as e�i⇡nv = �x
v . Therefore, imposing the local

Z2 symmetry is equivalent to imposing the Z2 version of Gauss’s law
P

v2l El = nv mod 2.

Next, we write down a new Hamiltonian which is invariant under the local symmetry transforma-
tions and also captures the dynamics of the matter and the gauge field. For the Ising paramagnetic
model above, the Hamiltonian terms �x

v are already invariant under the local symmetries, so we
do not need to do anything about them and can simply include them in the new Hamiltonian.
Generally this is not the case. For example, if (small) nearest neighbor Ising coupling terms �z

v�
z
u

are included in the Hamiltonian, they need to be modified as �z
v⌧

z
hvui�

z
u in order to be invariant

under all local symmetry transformations. Such a modification is always possible for any local
terms that satisfy the global Z2 symmetry.

Besides that we add the term Uv = �x
v

Q
v2e ⌧

x
e at every vertex v to enforce gauge symmetry (Gauss’s

law) and Fp =
Q

e2p ⌧
z
e , where the product is over all edges around a plaquette p, to enforce the
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Figure 4: Gauging the Z2 symmetry in the transverse field Ising model to obtain the Toric
Code model.

In particular, it can be obtained by ‘gauging’ the trivial paramagnet in the transverse field
Ising model. Let’s see how that is achieved.

In the transverse field Ising model, the Hamiltonian at the paramagnetic limit (no sponta-
neous symmetry breaking) takes the simple form of

H = −
∑

v

σxv (3)

where σx acts on the spin 1/2 degrees of freedom on each lattice site (circles in Fig.4) as(
0 1
1 0

)
. This is the ’matter’ DOF of the system. The system has a global Z2 symmetry of

U =
∏

v σ
x
v and the ground state is invariant under this symmetry

|ψ⟩ = ⊗ 1√
2
(| ↑⟩+ | ↓⟩) (4)

where | ↑⟩ and | ↓⟩ are eigenstates of σz =

(
1 0
0 −1

)
.

Our goal is to take the system with global symmetry and turn it into a system with local
symmetry. That is, the symmetry group will be generated not by just one global symmetry
operation, but by symmetry operations at all spatial locations (on each lattice site). Note
that, the transverse field Hamiltonian is already invariant under local Z2 symmetries gener-
ated by σx on each site. But this is no longer true if a small Ising perturbation of the form
σzσz is added. We want the procedure to work for the whole phase. Therefore, although we
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will focus on the transverse field limit for simplicity of discussion, we will present a gauging
procedure that can be applied to any Z2 symmetric Hamiltonian.

The gauging procedure can be generalized to all kinds of global internal unitary symmetries
of group G in the following steps:

• Take a system with global unitary internal symmetry of group G with degrees of
freedom on the sites of a lattice and with global symmetry acting as a tensor product
of operators on each lattice site.

• Introduce gauge field degrees of freedom onto the edges of the lattice and define gauge
symmetry transformation as acting on each lattice site and the edges around it.

• Modify the terms in the original Hamiltonian, by coupling the original degrees of
freedom with the gauge field, such that each term is invariant under all local gauge
symmetry transformations.

• Add vertex terms to the Hamiltonian to enforce gauge symmetry and add plaquette
terms to enforce the zero flux constraint.

To do this, first we introduce the gauge field degrees of freedom on each edge of the lattice
(diamonds in Fig.4). For a Z2 gauge field, the degrees of freedom are again two level spin
1/2’s and we label them as τ spins. We define a local Z2 symmetry generated at each lattice
site with Uv = σxv

∏
v∈e τ

x
e where the product is over all edges with v as one end point. This

local symmetry can be interpreted as enforcing the Gauss’s law in the presence of charged
matter.

a) Now, follow the steps mentioned above, interpreting the zero flux constraint as adding
a term in the Hamiltonian as −∑

p

∏
e∈p τ

z
e (for an explanation why, read the next

section after the computations). What is the Hamiltonian that you get after you do
the gauging? Argue, why it is the following:

Hg = −
∑

i

σxi −
∑

v

Uv −
∑

p

Fp = −
∑

i

σxi −
∑

v

σxv
∏

v∈e
τxe −

∑

p

∏

e∈p
τ ze . (5)

b) Now argue that by enforcing the gauge symmetry as a constraint, we get exactly the
toric code!

c) The usefulness of the interpretation of the toric code as a gauge theory comes from the
fact that its properties can be interpreted as a property of the entire phase in a gauge
theory, and not just for the isolated toric code Hamiltonian.
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To see this, we will now see that the mutual and self statistics of the (anyonic) quasi-
particles are still true in the above Hamiltonian when the Uv is not enforced as a hard
constraint and the matter DOF are kept in the system.

Check now that the string operators can take the form shown in Fig. 4 (b), (c). The
one of the form σzτ zτ z...τ zσz creates a gauge charge e at its two ends, in a way that
does not violate the gauge constraints. The one of the form τxτx...τx creates a π gauge
flux m at its two ends. Using the procedure in Fig. 3, show that both the gauge charge
and gauge flux are bosons and they have a −1 mutual braiding statistics.
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