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Tutorial 4: More Toric code, Landau levels

1 Long range entanglement in Toric code groundstate

In the lecture, we saw that local indistinguishability in toric code groundstate implies that
any state |ψ⟩ in the ground state subspace is long-range entangled, i.e. there can not be any
finite depth unitary circuit UFD that connects it to a trivial product state, i.e., such that
|ψ⟩ ̸= UFD |++ · · ·+⟩. We will see this more explicitly in the first problem of the tutorial,
and also show a different proof of this above fact without using local indistinguishability.

a) Let us first recall the proof of long range entanglement from local indistinguishability.
Assume that |ψ⟩ is connected to a product state |++ · · ·+⟩ via finite-depth quantum
circuit UFD, as |ψ⟩ = UFD |++ · · ·+⟩, and that another toric code groundstate |ϕ⟩,
orthogonal and locally indistinguishable to |ψ⟩, exists to reach a contradiction.

Hint: The only state locally indistinguishable to |++ · · ·+⟩ is itself.

b) Does this argument work if you want to prove that the toric code ground state on a
sphere (instead of a torus) is long range entangled?

c) We would like to argue that any topologically ordered ground state hosting anyons
with non-trivial braiding statistics must be long range entangled, without resorting to
the global topology of the base manifold.

Consider an operator string γabm that creates two m−particles (plaquette excitations)
along a path γab connecting two (plaquette) sites a and b through the upper half-plane
Rup. Next, consider an operator loop γ◦be that moves an e particle (a vertex excitation)
along a closed loop ◦b around the point b, and its inverse (γ◦be )† (See Fig. 1). If |ψ⟩ is
a toric code ground state, what is the effect of the braiding of these operators on such
state, i.e. what is the final state (γ◦be )†γabm γ

◦b
e |ψ⟩?

d) By contradiction, let us assume that |ψ⟩ is short-range entangled. By definition, this
means there exists a finite-depth unitary circuit UFD such that |ψ⟩ = UFD |++ · · ·+⟩.
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Figure 1: Anyon braiding diagram describing the action of the three operators. Here the two
dots are the points a, b which constitute a subregion A. We further divide the rest
of the 2d surface into Rup and Rdown which are mutually exclusive subregions,
such that A ∪ Rup ∪ Rdown is the whole lattice (figure from Lee, Li, Yoshida
https://arxiv.org/pdf/2405.07970.)

The loop operator γ◦be is a symmetry of the toric code ground state |ψ⟩, since γ◦be |ψ⟩ =
|ψ⟩. Prove that the same is true for |++ · · ·+⟩ under the “dressed” loop operator

τ◦be ≡ U †
FDγ

◦b
e UFD.

e) Consider another m-particle string operator γ′ abm connecting a and b though the lower
half-plane Rdown. Together, γabm and γ′ abm form a loop operator via γ◦m ≡ γabm (γ′ abm )†.

Even though only the loop operator γ◦m is a symmetry of |ψ⟩, and not the strings γabm
and γ′ abm (why?), the same does not happen with a product state such as |++ · · ·+⟩.
In fact, we can split the dressed counterpart τ◦m into two open-string operators that
are also symmetries of |++ · · ·+⟩. The one acting acting non-trivially on the upper
half-plane is defined as

τ̃abm ≡ Rdown⟨++ · · ·+| τ◦m |++ · · ·+⟩Rdown ⊗ 1Rdown . (1)

Argue that

i) τ̃abm is a symmetry of |++ · · ·+⟩;
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ii) τ̃abm acts in the same way as τabm ≡ U †
FDγ

ab
mUFD far from its endpoints. That is,

τ̃abm = τabmOA, where A is a small region around a and b (See Fig. 1) and OA is an
operator supported in A; and

iii) the braiding relation is preserved: (τ◦be )†τ̃abm τ
◦b
e = −τ̃abm . Here, we assume that the

curves γm and γe intersect at a point far away from A.

f) Finally, use part d) and points i) and iii) above to reach a contradiction.

g) In words, why did we reach a contradiction? Where was the fact that |++ · · ·+⟩ is a
product state and that UFD has finite depth important?

2 Toric code with boundaries (topological qubit)

Consider the toric code on a lattice with boundaries as shown in Fig 2,

Figure 2: Toric code on boundaries

The rough boundary conditions means that plaquette terms get truncated, such as the term
−Z1Z2Z3, while smooth boundary conditions mean that star terms get truncated, such as
the term −X4X5X6. Here, the plaquette Bp and the star Av terms are defined in the bulk
with Z and X operators respectively:

Bp =
Z
Z

Z
Z , Av =

X
X

X
X . (2)
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Show that there is a two-dimensional space of groundstates. A good way to do this is using
the algebra of string operators which terminate at the various components of the boundary
without creating excitations.

3 Landau levels

In this problem we will consider a charged particle in a uniform magnetic field B = Bẑ. We
will ignore the dimension in which the field is pointed, so the particle moves only in the two
directions x, y transverse to the field. This problem is a crucial ingredient in the quantum
Hall effect(s), which will be a topic of study in this week and the next. This problem is for
you to jog your memory before the lectures.

Consider a particle of charge q in a vector potential

A =
B

2
(−yx̂+ xŷ). (3)

a) Show that the magnetic field is as stated above.

b) Show that a classical particle in this potential will move in circles at an angular fre-
quency ω0 =

qB
mc where m is the mass and speed of light c = 1.

c) Consider the Hamiltonian for the corresponding quantum problem

H =
1

2m
|p− qA|2 (4)

=
1

2m

((
px +

qB

2
y

)2

+

(
py −

qB

2
x

)2
)
. (5)

Show that

Q ≡
(
px +

qB

2
y

)
and P ≡

(
py −

qB

2
x

)
(6)

are canonical in the sense that [Q,P ] = iℏqB. Write H in terms of these operators
and show that the allowed levels are En =

(
n+ 1

2

)
ℏω. What is ω? It is convenient to

construct the creation and annihilation operators a = 1√
2qℏB (Q+ iP ), a† = 1√

2qℏB (Q−
iP ) and checking that [a, a†] = 1.

d) Can you argue (in this gauge) why each energy level must be degenerate? Hint: find
another canonical pair of operators that commutes with H and with Q,P .
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e) To understand the degeneracy better, let’s write the wavefunctions for n = 0 (the
lowest Landau level (LLL)) in terms of z ≡ x + iy, z ≡ x − iy. Recall that the
groundstate(s) of a harmonic oscillator satisfy a|0⟩ = 0. Write this condition for the
n = 0 states in terms of z, z. Writing the LLL wavefunctions as

ψ0(z, z) = ⟨x, y|n = 0⟩ = e−
qB
4ℏ |z|2u(z, z) (7)

show that the condition is solved when u(z, z) is any holomorphic function:

∂zu = 0. (8)

f) A useful basis of such functions is monomials um = zm. Show that ψ0,m ≡ zme
− 1

4ℓ2
B

zz∗

(where ℓB ≡
√

ℏc
qB is the magnetic length) is peaked at a radius rm =

√
2mℓB.

g) Show that ψ0,m is an eigenstate of the angular momentum Lz = i(xpy − ypx) = iℏ∂ϕ,
where z ≡ reiϕ.

h) If the system is a disc of radius R there is a biggest value of m that can fit. Show that
the number of LLL states that can fit is

N =
ΦB

Φ0
(9)

where ΦB = πR2B is the flux through the sample and Φ0 ≡ 2πℏc
q is the flux quantum

which appears in the periodicity of the interference pattern in the Aharonov-Bohm
experiment.

.
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