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Tutorial 4: More Toric code, Landau levels

1 Long range entanglement in Toric code groundstate

In the lecture, we saw that local indistinguishability in toric code groundstate implies that
any state |¢) in the ground state subspace is long-range entangled, i.e. there can not be any
finite depth unitary circuit Upp that connects it to a trivial product state, i.e., such that
|y # Upp |+ + -+ +). We will see this more explicitly in the first problem of the tutorial,
and also show a different proof of this above fact without using local indistinguishability.

a)

Let us first recall the proof of long range entanglement from local indistinguishability.
Assume that |¢) is connected to a product state |+ + - - - +) via finite-depth quantum
circuit Upp, as |¢) = Upp |+ + ---+), and that another toric code groundstate |¢),
orthogonal and locally indistinguishable to [¢), exists to reach a contradiction.

Hint: The only state locally indistinguishable to |+ + - - - +) is itself.

Does this argument work if you want to prove that the toric code ground state on a
sphere (instead of a torus) is long range entangled?

We would like to argue that any topologically ordered ground state hosting anyons
with non-trivial braiding statistics must be long range entangled, without resorting to
the global topology of the base manifold.

Consider an operator string v& b that creates two m— particles (plaquette excitations)
along a path v* connecting two (plaquette) sites a and b through the upper half-plane
R"P. Next, consider an operator loop vt that moves an e partlcle (a vertex excitation)
along a closed loop oj, around the point b, and its inverse (72*)T (See Fig. ' If |¢) is
a toric code ground state, what is the effect of the braiding of these operators on such
state, i.e. what is the final state (720)Ty20y% |¢))?

By contradiction, let us assume that |¢) is short-range entangled. By definition, this
means there exists a finite-depth unitary circuit Upp such that |¢) = Upp [+ + - - +).
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Figure 1: Anyon braiding diagram describing the action of the three operators. Here the two

dots are the points a, b which constitute a subregion A. We further divide the rest
of the 2d surface into R*? and R%™%" which are mutually exclusive subregions,
such that A U R* U R9"" is the whole lattice (figure from Lee, Li, Yoshida
https://arxiv.org/pdf/2405.07970.)

The loop operator v2b is a symmetry of the toric code ground state |¢), since ¥ |¢) =
|). Prove that the same is true for [+ 4 ---+4) under the “dressed” loop operator
T = U}D'ygbUpD.

Consider another m-particle string operator 7/% connecting a and b though the lower

half-plane R, Together, 72 and ~/2° form a loop operator via 72, = 2 (.2t

Even though only the loop operator vy, is a symmetry of [¢), and not the strings 7%’
and 7/% (why?), the same does not happen with a product state such as [+ -+ -- - +).
In fact, we can split the dressed counterpart 7, into two open-string operators that
are also symmetries of |+ + ---+). The one acting acting non-trivially on the upper

half-plane is defined as

'fgbb = Rdown<+ + e +‘ TTC;L |+ + “e +>Rdown ® 1Rd0Wn, (1)
Argue that
i) 79 is a symmetry of [+ + - +);


https://arxiv.org/pdf/2405.07970

ii) 72 acts in the same way as 7% = U}nyf;fU rp far from its endpoints. That is,

%ﬂnb = T&bo A, where A is a small region around a and b (See Fig. |1I) and O4 is an
operator supported in A; and

iii) the braiding relation is preserved: (r20)17307% = —7%_ Tere, we assume that the
curves v, and 7. intersect at a point far away from A.

f) Finally, use part @ and points|i)| and above to reach a contradiction.

g) In words, why did we reach a contradiction? Where was the fact that |+ +---+) is a
product state and that Upp has finite depth important?

2 Toric code with boundaries (topological qubit)

Consider the toric code on a lattice with boundaries as shown in Fig
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Figure 2: Toric code on boundaries

The rough boundary conditions means that plaquette terms get truncated, such as the term
— 27217573, while smooth boundary conditions mean that star terms get truncated, such as
the term —X;X5X¢. Here, the plaquette B, and the star A, terms are defined in the bulk
with Z and X operators respectively:

B, = @ sz%}e (2)



Show that there is a two-dimensional space of groundstates. A good way to do this is using
the algebra of string operators which terminate at the various components of the boundary
without creating excitations.

3 Landau levels

In this problem we will consider a charged particle in a uniform magnetic field B = BZ. We
will ignore the dimension in which the field is pointed, so the particle moves only in the two
directions x,y transverse to the field. This problem is a crucial ingredient in the quantum
Hall effect(s), which will be a topic of study in this week and the next. This problem is for
you to jog your memory before the lectures.

Consider a particle of charge ¢ in a vector potential

A= (i) Q

a) Show that the magnetic field is as stated above.

b) Show that a classical particle in this potential will move in circles at an angular fre-
quency wg = fn—fi where m is the mass and speed of light ¢ = 1.

c¢) Consider the Hamiltonian for the corresponding quantum problem

1
H=_—|p—qA? 4
5P —dAl (4)
1 qB 2 qB 2
= om ((Px + 2?/) + <py - 23”) - (5)
Show that B B
Q= (pm + QQy) and P = <py - q2:c> (6)

are canonical in the sense that [Q, P] = ihgB. Write H in terms of these operators
and show that the allowed levels are F,, = (n + %) hw. What is w? It is convenient to

construct the creation and annihilation operators a = @(Q—HP), at = \/2(11%(@ —

iP) and checking that [a,al] = 1.

d) Can you argue (in this gauge) why each energy level must be degenerate? Hint: find
another canonical pair of operators that commutes with H and with @Q, P.



e)

To understand the degeneracy better, let’s write the wavefunctions for n = 0 (the
lowest Landau level (LLL)) in terms of z = x + iy, Z = x — iy. Recall that the
groundstate(s) of a harmonic oscillator satisfy a|0) = 0. Write this condition for the
n = 0 states in terms of z,Z. Writing the LLL wavefunctions as

do(z.2) = {z.yln = 0) = e B Fu(z 2) (7)
show that the condition is solved when wu(z,Z) is any holomorphic function:
ozu = 0. (8)
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A useful basis of such functions is monomials u,, = 2™. Show that vy ,, = z™e B

(where {p = | /;—é is the magnetic length) is peaked at a radius r,, = v2mfp.

Show that 1, is an eigenstate of the angular momentum L, = i(xpy — yps) = thdy,
where z = re'®.

If the system is a disc of radius R there is a biggest value of m that can fit. Show that
the number of LLL states that can fit is

== (9)
where @5 = mR?B is the flux through the sample and ®; = 2me: is the flux quantum
which appears in the periodicity of the interference pattern in the Aharonov-Bohm
experiment.
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