

Module 1

1 Introduction to tensor network diagrammatics

Motivation:

· What is the memory cost to represent a N qubit quantum State?

What is the memory cost to represent the joint probability distribution of N bits?

Tensors: generalization of vectors and matrices.

• A d-dimensional vector $|+\rangle \in \mathbb{C}^d$; $|+\rangle = \frac{1}{2} \forall i |i\rangle$ = A rank-1 tensor/array

14)
To "physical dimension" = d

 $d_1 \times d_2$ dimensional matrix $\equiv rank-2$ tensor $\in \mathcal{C}^{d_1} \otimes \mathcal{C}^{d_2}$

 $d_{i} \times d_{z} \times xdn$ dimensional tensor $\in C^{d_{i}} \otimes C^{d_{z}} \otimes C^{d_{n}}$

can be in general
specified by $d_1 \times d_2 \times \dots \times d_r$ complex

2 Tensor operations

· Matrix products.

A -> M, x M2 dimensional matrix

 $\beta \rightarrow m_2 \times m_3$

AB = C -> m, x m3 dimensional matrix

 $i - AB + j = \sum_{b} (i - IA + k - B + j)$

. contracted legs

· computational complexity

= M2 elementary steps.

Trace of matrix/tensor

 $Tn\left[-\frac{A}{1}\right] = \sum_{R} k - \frac{A}{1} - k =$

Exercise 1. Generalize this to tensors of general rank

Tensor product

Let A and B be tensors of rank g_1 , and g_2 $A \otimes B$ is a tensor of rank $g_1 + g_2$, defined as $A \otimes B$ is a tensor of $g_1 + g_2 = A$ $A \otimes B$ $A \otimes B$

· Grouping/splitting bogether A mark n+m tensor can be converted into a mank a tensor by grouping as such: $T_{I,J} := T_{i,\dots,in}; j_1\dots j_m$

 $I := i_1 + d_1^{(i)} \cdot i_2 + d_1^{(i)} d_2^{(i)} \cdot i_3 + \dots + d_r^{(i)} \cdot d_{n-r}^{(i)} \cdot i_n$ $J := j_1 + d_1^{(j)} \cdot j_2 + d_1^{(j)} d_2^{(j)} \cdot j_3 + \cdots + d_1^{(j)} \cdot d_{n-1}^{(j)} \cdot j_n$

The reverse process is "Splitting"

3 Splitting tensors and Singular Value Decomposition

SVD of matrix

A = U S V + matrix

mxn

mxn

mxn

noitary

diagnal

matrix

matrix

matrix

matrix

matrix

matrix

 $UU^{\dagger} = U^{\dagger}U = \mathbf{1}_{m \times m} \qquad \qquad VV^{\dagger} = V^{\dagger}V = \mathbf{1}_{n \times n}$

 $5 \equiv 0$ \rightarrow the entries are the singular values of A. $A v = \sigma u$ $At_{11} = \sigma v$

Columns of U and V form an orthonormal basis

of Singular values = "rank" of A

< min (m,n)

Why SVD? => Best compression of a matrix.

(i) Because we can "toruncate" matrices to a low rank matrix approximation by keeping only the first k singular values of S, and first k when sof U and V: $A^{(K)} \equiv U S^{(K)} T [This has rank K]$

 $u \rightarrow \widetilde{u}$

Eckart-Young theorem says $\widetilde{A}^{(k)}$ is the optimal matrix closest to A with fixed rank k, i.e $\|A-\widetilde{A}^{(k)}\|_F \leq \|A-B\|_F$ for all B of rank k. Here $\|M\|_F \equiv \sqrt{\text{tr }M^{\dagger}M}$ is the Frobenius norm.

(ii) Also provides an optimal truneation of entanglement (will be shown later).

Splitting of tensor by SVD:

TAT = TU S VT:

Singular Value de composition

U SVT

Tenson Networks: diagram which tells how to combine several tensors into a single composite tensor

4 Quantum mechanics and tensor network

Multipartite quantum states are conveniently represented ITS E COCO CO ... Cd spin-d degree of freedom on a lattice F 147 · Importantly, the splitting of this rank N tensor into N tensors reveal the entanglement structure of the State.

· Bipartite entanglement of pure states.

Consider a quantum state on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ represented as $|\mathcal{H}_{A}\rangle = \sum_{ij} \mathcal{H}_{ij} |a_{i}\rangle |b_{j}\rangle$ where $|a_{i}\rangle$ and $|b_{j}\rangle$ are an orthonormal basis for \mathcal{H}_{A} and \mathcal{H}_{B} respectively.

14) is entangled if 14 \neq 14 \otimes 14 \bigcirc 14 \bigcirc 14 \bigcirc 14 \bigcirc \bigcirc 14 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

An information theoretic measure of pure state bipartite entanglement; von Neumann entropy of the reduced density matrix

$$P_{A} = tr_{B} | 4 \rangle \langle 4 |$$

$$= \sum_{j} \langle b_{j} | 4 \rangle \langle 4 | b_{j} \rangle$$

$$= \sum_{i_{1}i_{2}} \gamma_{i_{1}} \gamma_{i_{2}j}^{*} | a_{i_{1}} \rangle \langle a_{i_{2}} |$$

 $S_{VN}(P_A) \equiv -tr_A P_A ln P_A = -\frac{\sum_i ln \mu_i}{n}$ $suppose \mu_i$ are the eigenvalues of P_A

Mi must be rual and non-negative (why?) SVD provides a convenient way to estimate entanglement.

(\R (\R T = USV^{\dagger}) $|\Psi\rangle = \sum_{i}^{D} |\lambda_{i}| |L_{i}\rangle \otimes |R_{i}\rangle$ |Li) and |Ri) are the columns of U and V matrices in 3VD of If and li are the singular values. Exercise: Show $S_{VN}(P_L) = -\sum_{i} \lambda_i^2 \ln \lambda_i^2$ Say D is the Schmidt rank of the SVD. An important property: SVN \le log D Recall the multipartite quantum state the dimension of the virtual bond (D) indicates the entanglement in the state!